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ABSTRACT

In the dynamic diffusion limit of radiation hydrodynamics, advection domi-

nates diffusion; the latter primarily affects small scales and has negligible impact

on the large scale flow. The radiation can thus be accurately regarded as an

ideal fluid, i.e., radiative diffusion can be neglected along with other forms of

dissipation. This viewpoint is applied here to an analysis of simple waves in an

ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries

over by simply replacing the material sound speed, pressure and index with the

values appropriate for a radiating fluid. A complete analysis is performed for a

centered rarefaction wave, and expressions are provided for the Riemann invari-

ants and characteristic curves of the one-dimensional system of equations. The

analytical solution is checked for consistency against a finite difference numerical

integration, and the validity of neglecting the diffusion operator is demonstrated.

An interesting physical result is that for a material component with a large num-

ber of internal degrees of freedom and an internal energy greater than that of

the radiation, the sound speed increases as the fluid is rarefied. These solutions

are an excellent test for radiation hydrodynamic codes operating in the dynamic

diffusion regime. The general approach may be useful in the development of

Godunov numerical schemes for radiation hydrodynamics.

Subject headings: hydrodynamics, radiative transfer

1. Introduction

The equations of radiation hydrodynamics (RHD) are used to model fluids in which

matter and radiation are coupled. In an opaque material, the coupling is strong and acts

primarily to maintain the material and radiation fluids in local thermodynamic equilibrium

(LTE). Once at a common temperature, the radiation acts as an additional source of pressure

as well as a diffusive energy sink, and the material advects the radiation. The relative
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importance of diffusion and advection depends upon both the optical depth of the system

and its characteristic velocity. If βτ ≪ 1, where v = βc is the fluid velocity and l = τλp is a

characteristic length (λp being a photon mean-free path), diffusion dominates advection; such

a system is referred to as being in the static diffusion limit. If βτ ≫ 1, advection dominates

diffusion and the system is in the dynamic diffusion limit. This paper is concerned primarily

with dynamic diffusion.

In the dynamic diffusion limit, diffusion only operates on length scales λ ≪ l , in a

manner analogous to viscosity and heat conduction (albeit on different scales). The bulk

flow properties can thus be modeled accurately by treating the radiation fluid as ideal, i.e.,

by neglecting radiative diffusion along with other forms of dissipation. Many of the methods

developed for analyzing fluids without radiation can thus be applied to a radiating fluid

operating in the dynamic diffusion limit. The effects of diffusion are limited to boundary

layers and shocks and other regions of the flow in which gradients are large.

This viewpoint is pursued here by analyzing the equations of ideal RHD in one dimen-

sion. I begin in §2 by outlining the equations of ideal RHD in the gray diffusion limit in

a frame comoving with the fluid. A review of the thermodynamics of a radiating fluid is

provided in §3, and the impact of radiation on a centered rarefaction wave is presented in

§4. Results from a finite difference numerical integration are included as a consistency check,

along with an example of the effects of dissipation. A discussion of how to generalize this

approach to include more general boundary conditions is given in §5, along with expressions

for the characteristic curves and Riemann invariants of the combined fluid. A summary and

a discussion of how these ideas might be used in the development of Godunov schemes for

numerical RHD is given in §6.

2. Equations

The energy equations for an optically-thick gray medium in LTE, in a frame comoving

with the fluid and neglecting scattering, are

DU

Dt
− γ

U

ρ

Dρ

Dt
= cκ

(

E − aT 4
)

(1)

and
DE

Dt
− 4

3

E

ρ

Dρ

Dt
= cκ

(

aT 4 − E
)

+
c

3
∇ ·

(

1

κ
∇E

)

, (2)

where ρ, U and T are the mass density, internal energy density and temperature of the

material, E is the energy density of the radiation, c is the speed of light, a is the radiation

constant, κ ∼ λ−1
p is the absorption opacity in units of inverse length, and D/Dt is the
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derivative following a fluid element. Equation (1) is specific to an ideal gas equation of state

with material pressure

Pm = (γ − 1)U, (3)

where γ is the adiabatic index of the material.

The three relevant time scales for these equations are the advection time scale tadv = l/v,

the diffusion time scale tdiff = κl2/c and the time scale for coupling between the material and

radiation tcoup = (cκ)−1 (the mean time between photon collisions). Their relative scalings

are
tadv

tcoup
∼ τ

β
, (4)

tdiff

tcoup
∼ τ 2 (5)

and
tdiff

tadv
∼ βτ, (6)

so that in the dynamic diffusion limit (τ ≫ β−1)

tcoup ≪ tadv ≪ tdiff . (7)

Thermal equilibrium is thus established on a short time scale, and diffusion can be

neglected for spatial variations λ ∼ l . This can be seen explicitly by subtracting equation

(2) from equation (1):

E − aT 4 =
1

2cκ

(

D

Dt
[U − E] −

[

γU − 4

3
E

]

1

ρ

Dρ

Dt
+

c

3
∇ ·

[

1

κ
∇E

])

. (8)

The diffusion operator is O([βτ ]−1) relative to the advection terms, which are in turn O(βτ−1)

relative to the left hand side, so that

E ≃ aT 4 (9)

in the dynamic diffusion limit. Expression (9) will generally be considered to be an equality

throughout this analysis, although of course departures from thermal balance, no matter how

small, are necessary to maintain coupling between the radiation and the material. Denoting

the total pressure Pm + Pr by P , where

Pr =
E

3
≃ aT 4

3
, (10)

the equations of ideal RHD are given by

1

ρ

Dρ

Dt
+ ∇ · v = 0, (11)
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ρ
Dv

Dt
+ ∇P = 0, (12)

DU

Dt
− γ

U

ρ

Dρ

Dt
= cκ

(

E − aT 4
)

, (13)

and
DE

Dt
− 4

3

E

ρ

Dρ

Dt
= cκ

(

aT 4 − E
)

. (14)

Coupled with the equations of state (3) and (10) for the material and radiation, these

equations form a closed set. Their form in one Cartesian dimension is the basis for the

analysis in the following sections.

3. Thermodynamics

Most of the contents of this section are not new; the results can be found in standard

textbooks (Chandrasekhar 1967; Cox & Giuli 1968; Mihalas & Mihalas 1984) and are only

included here for completeness and ease of reference, and to highlight the most general

features of the solutions to be described in the next section. The sum of equations (13) and

(14) is the first law of thermodynamics for the combined material-radiation fluid:

d(U + E) −
(

γU +
4

3
E

)

dρ

ρ
= 0. (15)

It is straightforward to demonstrate that this is equivalent to

d (sm + sr) = 0, (16)

where

sm =
kB

µmp
ln

(

U

ργ

)
1

γ−1

(17)

is (to within a constant) the specific entropy of the material and

sr =
4aT 3

3ρ
(18)

is the specific entropy of the radiation (i.e, the entropy of radiation per unit mass of ma-

terial).1 Changes in ideal RHD are adiabatic: the total entropy of the combined fluid is

conserved for a fluid element.

1Notice that sr is the entropy of a photon gas coupled to a material fluid; it is not in general equivalent

to sm with γ = 4/3. The two are equivalent (to within a constant factor) only in the high energy density

limit.
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The first law combined with the equation of state for the material (U ∼ ρT ) implies

(

1

γ − 1
+ 12α

)

dT

T
= (1 + 4α)

dρ

ρ
, (19)

where

α ≡ Pr

Pm
∝ T 3

ρ
(20)

is the ratio of radiation to material pressure. The density can be expressed as a function of

α by combining (19) and (20):

dα

α
= 3

dT

T
− dρ

ρ
=

3γ − 4

1 + 12(γ − 1)α

dρ

ρ
, (21)

or
(

ρ

ρ0

)3γ−4

=
α

α0

e12(γ−1)(α−α0), (22)

where a subscript denotes a reference value; for the problem analyzed in the following section,

it is the quiescent value before the rarefaction wave is excited. An important implication

of the above expression is that rarefaction (compression) is associated with an increase

(decrease) in the pressure ratio α for γ < 4/3 (i.e., ρ ≶ ρ0 when α ≷ α0); for γ > 4/3, the

opposite conditions hold.

The other fluid quantities are given by

(

T

T0

)3γ−4

=

(

α

α0

)γ−1

e4(γ−1)(α−α0), (23)

(

Pm

P0

)3γ−4

=

(

1

1 + α0

)3γ−4 (

α

α0

)γ

e16(γ−1)(α−α0) (24)

and
(

Pr

P0

)3γ−4

=

(

α0

1 + α0

)3γ−4 (

α

α0

)4(γ−1)

e16(γ−1)(α−α0). (25)

Expressions (22)-(25) match expressions 9.127 of Cox & Giuli (1968) for γ = 5/3 and α = Z.

For γ = 4/3, α = const. and expressions (22)-(25) must be replaced with

ρ

ρ0

=

(

T

T0

)3

, (26)

Pm

P0
=

1

1 + α0

(

T

T0

)4

(27)
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and
Pr

P0

=
α0

1 + α0

(

T

T0

)4

. (28)

Small changes in the total pressure satisfy the following expression:

dP = Pm

(

dρ

ρ
+ [1 + 4α]

dT

T

)

. (29)

Combining the above expression with expression (19) gives the adiabatic sound speed for

the radiating fluid:

c2
a ≡

(

∂P

∂ρ

)

s

= Γ1
P

ρ
, (30)

where the total entropy is held constant and

Γ1 ≡
d lnP

d ln ρ
=

1

1 + α

(

1 +
[γ − 1][1 + 4α]2

1 + 12[γ − 1]α

)

. (31)

The closed form expression for ca as a function of α is

ca = c0

(

α

α0

)
γ−1

2(3γ−4)

e
2(γ−1)
3γ−4

(α−α0)

√

(1 + α)Γ1

(1 + α0)Γ0
, (32)

where Γ0 is Γ1 evaluated at α = α0.

4. Centered Rarefaction Wave

This section will attempt to follow closely the standard hydrodynamic analysis, a cogent

expression of which can be found in §§99-105 of Landau & Lifshitz (1987). One of the simplest

one-dimensional flows to analyze is a centered rarefaction wave. The prototypical example of

such a flow is that generated behind a piston moving out of a semi-infinite fluid at constant

velocity. Since there are no characteristic time or length scales in such a system, all of the

flow variables must depend upon the coordinates through the similarity variable ξ = x/t, so

that ∂/∂t = −(ξ/t)d/dξ and ∂/∂x = (1/t)d/dξ. The form of equations (11) and (12) for a

one-dimensional similarity flow is

(v − ξ)
dρ

dξ
+ ρ

dv

dξ
= 0, (33)

(v − ξ)
dv

dξ
+

1

ρ

dP

dξ
= 0. (34)
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Combining these equations with equation (30) gives

v ± ca = ξ (35)

and

v = ±
∫

ca dρ

ρ
= ±

∫

dP

ρca
, (36)

where a rarefaction wave corresponds to the plus sign and a compression wave to the minus

sign. These correspond to the hydrodynamic results with cm =
√

γPm/ρ → ca and Pm → P .

Details on evaluating the above integral can be found in the Appendix; an approximate

solution valid for γ & 1.1 can be obtained from the following considerations.

From (30) and (36),
2

Γ1 − 1

dca

ca
=

dv

ca
+

dΓ1

Γ1(Γ1 − 1)
. (37)

The above expression is exact. Since Γ1 varies much more slowly with ξ than either v or ca

(γ < Γ1 < 4/3 and from [35] one expects v and ca to vary approximately linearly with ξ), it

can be approximated by
dv

dca
≃ 2

Γ0 − 1
, (38)

so that

v ≃ 2

Γ0 − 1
(ca − c0) ≃

2

Γ0 + 1

(x

t
− c0

)

(39)

and

ca ≃ 2

Γ0 + 1
c0 +

Γ0 − 1

Γ0 + 1

x

t
, (40)

where the velocity is defined to be zero in the initial state. This corresponds to the hydro-

dynamic result with cm → ca and γ → Γ0. The velocity slope varies between

2

γ + 1
<

dv

dξ
<

6

7
. (41)

To obtain the solution for the other flow variables, it is necessary to solve expressions (32)

and (40) implicitly to obtain α(ξ), and then insert the result into expressions (22)-(25).

The wave front is located at x = c0t and propagates away from the piston. A region of

constant velocity equal to the velocity of the piston is located between the piston and the

point

xtr =

(

c0 −
Γ0 + 1

2
|vp|

)

t, (42)
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where vp < 0 is the piston velocity. The location of this transition between the similarity flow

and the region adjacent to the piston travels away from the piston for |vp| < 2c0/(Γ0 + 1);

otherwise it travels towards the piston. For a piston velocity greater in magnitude than

|vp|crit =
2

Γ0 − 1
c0, (43)

the fluid is evacuated between the piston and the point x = −|vp|critt (the fluid quantities

go to zero).

Figure 1 shows the slope of the velocity as a function of α0, the quiescent ratio of

radiation to material pressure, for various values of γ.2 Also plotted in Figure 1 are points

from a finite difference numerical integration of equations (11)-(14). The code used to obtain

these results is a one-dimensional version of the ZEUS algorithm (Stone & Norman 1992;

Stone et al. 1992; Turner & Stone 2001) without diffusion. The initial temperature was set

to give β0 ≡ c0/c = 10−4 (this along with the value for α0 sets the initial density), and the

piston velocity was set to c0/(Γ0 + 1). Power-law fits to the Rosseland mean opacity were

used (Bell & Lin 1994), and the computational domain was set to L = κ−1
0 , where κ0(ρ0, T0)

is the initial opacity.3 The slope was measured from a least squares fit to the velocity profile

as a function of x after the wave front had propagated across the computational domain.

Analytical profiles of velocity, density, temperature and α as a function of ξ for γ = 5/3

are shown in Figures 2-5. The fact that α ∼ const. for α0 ≫ 1 is consistent with expression

(19), which gives ρ ∝ T 3 for α ≫ 1, i.e., α ∝ T 3/ρ ∼ const; it is simply the conservation

of entropy in the high energy density limit. When γ = 4/3, Γ1 = 4/3, ca = cm

√
1 + α0 and

expressions (39) and (40) are exact.

4.1. Isothermal Limit

The considerations that lead to the approximate expressions (39) and (40) break down

when Γ1 ≃ 1. In that case, and for a precise code comparison, the exact solution must

be used (see the Appendix for details on its calculation). The fluid quantity that is most

sensitive to the breakdown of the approximate solution is ca. Figures 6 and 7 show profiles of

the adiabatic sound speed for γ = 1.1 and γ = 1.01. As the adiabatic index of the material

2Comparison to the exact solution indicates that expression (39) is accurate to within 0.8% for γ ≥ 1.1.

3This corresponds to an optical depth of unity across the computational domain. Without diffusion, the

only constraint on the overall length scale is τ0 ≡ Lκ0 ≫ β0 so that the coupling time scale is much less

than the advection time scale.
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approaches unity, the speed of sound in the fluid increases as it rarefies. This is generally

associated with a value for Γ1 less than unity,4 which from expression (31) occurs for α less

than

αcrit =
1

8(γ − 1)



1 +

√

1 −
[

4(γ − 1)

9 − 8γ

]2


 ≃ 0.25

γ − 1
, (44)

where the latter expression is valid for γ − 1 ≪ 1. This is equivalent to a ratio of energy

densities near unity. Real solutions to the above expression can only be obtained for γ <

13/12. The increase of ca in regions of rarefaction thus occurs for a material component with

f =
2

γ − 1
> 24, (45)

where f is the microscopic degrees of freedom. A more careful analysis (see the Appendix)

confirms the f > 24 result, with a slight modification to the value for αcrit (expression

[A9]). The calculation in the Appendix also demonstrates that 1) the peak in ca seen in

Figure 7 continues to grow with decreasing γ, with ca,max ∼ (γ − 1)−1/2 (expression [A12]),

2) the sound speed always decreases for α0 > αcrit and 3) the portion of the solution that

approaches the isothermal limit only exists for α0 < 0.714.

Part of the reason for the unusual behavior of the sound speed is the increase of α as the

fluid is rarefied (recall that this occurs for any γ < 4/3). Figure 8 shows the profile of α for

γ = 1.01; even for α0 ≪ 1, the pressure ratio increases rapidly in the rarefaction region and

the fluid quickly becomes dominated by radiation pressure, independent of the initial pressure

ratio. Figure 9 shows the ratio of energy densities for the same set of parameters; this remains

close to unity for a wider range of parameters. While the fluid near the quiescent state

asymptotes to the hydrodynamic solution (Γ1 ≃ 1), the fluid eventually (for a sufficiently

large piston velocity) approaches the radiation-dominated solution (Γ1 = 4/3) in which

both radiation pressure and radiation energy density dominate. The increase of ca occurs

in the transition between these two asymptotic regimes where the fluid is dominated by

radiation pressure but the material and radiation energy densities are comparable. One

clear implication of these results is that RHD calculations with γ ≃ 1 can produce drastically

different results from a strictly isothermal calculation.

4This demonstrates another breakdown in the analogy between a radiating fluid and a material fluid

with γ = Γ1. If the latter were strictly true, Γ1 < 1 would imply a negative pressure; as it is, despite the

somewhat unusual behavior of the sound speed, the pressure remains perfectly well behaved.
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4.2. Effects of Diffusion

Figure 10 shows the velocity profile from finite difference numerical integrations both

with and without diffusion, for various values of β0τ0. The parameters for these calculations

are γ = 1.6667, β0 = 10−4 and α0 = 1. For sufficiently large values of β0τ0, the diffusion is

only modifying the transition between the self-similar and constant portions of the fluid, as

expected.

5. Characteristics and Reimann Invariants

As discussed in §101 of Landau & Lifshitz (1987), all that is required to extend the

results of the previous section to more general boundary conditions is the ability to express

all of the fluid quantities as functions of one another (P = P [ρ], v = v[P ], etc.). This is

ensured for isentropic boundary conditions, and the generalization of expression (35) is

x = t (v ± ca) + f(v), (46)

where f(v) is an arbitrary function of the velocity. These solutions are referred to as simple

waves, since the flow variables are all functions of x ± cat. The centered rarefaction wave is

a simple wave with f(v) = 0.

The Riemann invariants for the combined fluid are

J± = v ±
∫

dP

ρca
. (47)

They are conserved along the characteristic curves C± = v ± ca. As discussed in §104 of

Landau & Lifshitz (1987), they are strictly conserved only for isentropic flow. For adi-

abatic flow, the perturbations δv ± δP/(ρca) are conserved along the C± characteristics,

and perturbations in the total entropy, δsm + δsr ∝ (δU + δE − [γU + 4E/3]δρ/ρ)/U ∝
(1/[γ − 1] + 12α)δT/T − (1 + 4α)δρ/ρ, are conserved along the characteristic C0 = v.

6. Summary and Discussion

This paper has regarded a radiating fluid in the dynamic diffusion limit as ideal; diffusion

is neglected for the bulk of the fluid since it only modifies regions of the flow in which gradients

are large, in a manner analogous to other forms of dissipation such as viscosity and heat

conduction. A complete analysis has been performed for a centered rarefaction wave (§4),

and expressions for the characteristic curves and Reimann invariants of ideal RHD have been
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provided (§5). It has been shown that the much of the hydrodynamic analysis carries over

by simply replacing the standard adiabatic quantities with the form that they take in a

radiating fluid (§3). The exact solution requires the numerical integration of expression (36)

and the implicit solution of equation (35). The qualitative nature of the solution changes as

the internal degrees of freedom of the material become significant (f > 24). In that case,

if the initial energy content of the radiation is less the 90% of the internal energy of the

material, the sound speed of the fluid increases as it rarefies.

One application of §4 is as a test of numerical RHD codes; the solutions are nonlinear

and the only term that has been neglected is the diffusion operator. One can ensure that

the system of equations is in the dynamic diffusion limit simply by setting the length of

the computational domain such that its optical depth satisfies τ ≫ c/ca. Other tests could

be constructed by further extending hydrodynamic results; to cite a couple of examples,

Landau & Lifshitz (1987) include analyses of a uniformly accelerated piston and a centered

rarefaction wave reflecting off a solid wall. The solution for a compressive wave before it

steepens into a shock can be obtained from the negative branch of equations (35) and (36).

Any application of the results of §4 to physical systems must keep in mind the idealized

nature of the analysis. Since the density and temperature of the solutions change significantly

from their quiescent values, there are likely to be large regions of parameter space for which

the assumptions of dynamic diffusion break down. Mapping out the limits of their validity

for realistic opacities would be a useful follow-on exercise to this work. For flows with

βτ ∼ 1, the modification of these solutions by diffusion in the transition regions could likely

be obtained by an asymptotic analysis.

The considerations of §5 could be used in the development of Godunov numerical

schemes for RHD. An analysis of the hyperbolic nature of the full set of RHD equations

has been conducted by Balsara (1999a,b); the radiation flux in these papers was regarded as

a source term, however, so that only the material sound speed enters the expression for the

C± characteristics. The analysis performed here points to a more self-consistent approach

for numerically solving the equations of RHD in the dynamic diffusion limit. For calcula-

tions in which both advection and diffusion are important, one could still employ a Reimann

solver for the hyperbolic portion of the equations while treating the diffusion separately

(Dragojlovic et al. 2006).

This work was performed under the auspices of Lawrence Livermore National Security,

LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Liver-more National Laboratory under Contract DE-AC52-07NA27344.
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A. Calculation Details

The velocity can be calculated as a function of any of the other fluid variables by

expressing the integral (36) in the form appropriate for that variable. The closed form

expression of the integral in terms of α is given by

v =

∫

ca
1 + 12(γ − 1)α

(3γ − 4)α
dα, (A1)

where ca is given by expression (32). Numerical evaluation of this integral is straightforward

for γ > 4/3, but it becomes somewhat problematic when γ < 4/3 due to the rapid increase

of α.5 Expressing the integral in terms of the logarithm of the density appears to be more

robust, although other choices may be superior. Equation (22) can be inverted to express α

in terms of the density:

A
α

α0
= W

(

A exp

[

A + (3γ − 4) ln
ρ

ρ0

])

, (A2)

where W is the Lambert-W function (or product log) and

A ≡ 12(γ − 1)α0. (A3)

The velocity is then given by

v =

∫

ca (η) dη, (A4)

where η = ln(ρ/ρ0) and ca(η) is obtained from expressions (32) and (A2). The flow profiles in

the text were plotted with Mathematica, which provides a module for evaluating the product

log, although one can generate its values based upon a simple recursion formula. With v(ρ)

obtained numerically, equation (35) was solved with a root-finding algorithm to obtain ρ(ξ).

All the fluid quantities as a function of ξ then follow from the expressions given in the text.

The unusual behavior of the sound speed as γ → 1 discussed in the text can be obtained

analytically as follows. Clearly an increase in the sound speed requires that there be one or

more locations in the fluid for which dca/dξ = 0. Differentiating expression (32), one finds

that
1

ca

dca

dα
= 2

(γ − 1)(1 + 4α)

1 + A

(

1 + A

4(3γ − 4)α
+

5 − 3γ + A

1 + A + (γ − 1)(1 + 4α)2

)

. (A5)

Setting this expression to zero gives an expression that is quadratic in γ−1 and cubic in α0:

(1 + 12ǫα)(1 + 12ǫα + ǫ(1 + 4α)2) + 4(3ǫ − 1)α(2 − 3ǫ + 12ǫα) = 0, (A6)

5To get the rarefaction solution, one must integrate between α = α0 and α ≶ α0 when γ ≷ 4/3.
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where

ǫ ≡ γ − 1. (A7)

The physical branch of expression (A6) regarded as an equation for ǫ(α) is

ǫ =
−1 − 68α + 32α2 + (1 + 4α)

√
1 + 224α + 448α2

48α(−1 + 16α + 8α2)
. (A8)

The maximum of the above expression occurs at α = 0.714 and is 0.0862; i.e., γ < 1.0862.

This corresponds to f > 23.2, or, restricting f to integer values, f > 24.

Solving expression (A6) for α(ǫ) yields two positive real roots when ǫ < 0.0862. One of

these corresponds to the peak value of ca and is approximately

αcrit ≃
0.304

ǫ
− 2.22 + 1.15ǫ + O(ǫ2). (A9)

This corresponds to a ratio of energy densities

E

U
= 3ǫα ≃ 0.9. (A10)

An estimate of the peak value of ca can be obtained by looking at its asymptotic form for

ǫ ≪ 1 and αǫ ∼ 1:

ca ≃ 4α

√

ǫ

1 + 12ǫα
e−2αǫ. (A11)

This has a maximum at αǫ = (1 +
√

7)/12 = 0.304 given by

ca,max ≃ 0.307√
ǫ

. (A12)

The other root varies between 0.125 < α < 0.714 for 0 < ǫ < 0.0862. This corresponds

to a minimum in ca and marks the transition between the portion of the solution that

approaches the isothermal limit and the portion in which the sound speed increases. For

α0 > αcrit, neither of the roots is accessible (since α > α0). For 0.714 < α0 < αcrit, the first

root is accessible but not the second. For α0 < 0.714 both roots are accessible.
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Fig. 1.— Velocity slope for γ = 1.6667, 1.5, 1.4, 1.3333, 1.2, 1.1 and 1.01 (from bottom to

top). The solid lines are the approximate analytical results and the points are results from

a finite difference numerical integration with 512 grid points.
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Fig. 2.— Velocity profile for γ = 5/3 and α0 = 0.03, 0.1, 0.3, 1, 3 and 10 (from top to

bottom). Results outside of this range are close to the bracketing results.
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Fig. 3.— Density profile for γ = 5/3 and α0 = 0.01 (solid line), 0.3 (dotted line) and 10

(dashed line). Results outside of this range are close to the bracketing results.
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Fig. 4.— Temperature profile for γ = 5/3 and α0 = 0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 30 (from

bottom to top). Results outside of this range are close to the bracketing results.
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Fig. 5.— Profile of α for γ = 5/3 and α0 = 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100 and 1000

(from bottom to top). Results outside of this range are close to the bracketing results.
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Fig. 6.— Profile of ca for γ = 1.1 and α0 = 0.001, 0.01, 0.1, 1, 10 and 100 (solid lines

from left to right). Also shown are the hydrodynamic results for γ = 1.01 (dotted line) and

γ = 4/3 (dashed line).
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Fig. 7.— Profile of ca for γ = 1.01 and α0 = 0.001, 0.01, 0.1, 1, 3, 10, 30, 100 and 300 (solid

lines from left to right). Also shown are the hydrodynamic results for γ = 1.01 (dotted line)

and γ = 4/3 (dashed line).
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Fig. 8.— Profile of Pr/Pg for γ = 1.01 and α0 = 0.001, 0.01, 0.1, 1, 3, 10, 30, 100 and 300

(from bottom to top).
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Fig. 9.— Profile of E/U for γ = 1.01 and α0 = 0.001, 0.01, 0.1, 1, 3, 10, 30, 100 and 300

(from bottom to top).
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Fig. 10.— Velocity profile from a finite difference numerical integration with γ = 1.6667,

α0 = 1 and β0τ0 = ∞ (solid line), 104, 103, 102 and 10 (dashed lines in order of decreasing

accuracy). For β0τ0 = 10, the temperature drop is sufficient to make βτ ∼ 1 at x ∼ 0.1L.




